6 1		6		8		8	6	9		4				5		6	1	1			5	7			6			3	3			6		3
2 9	-99	3	5 💻	6			2	X	7	7	1	9		5		9		5		5	1	2	9	6	9		8	Ŭ	7		5			7
2						5	5			8			3		9	7	3			9	2	2		9	6	2	7	9	3	6	Ŭ		4	9
	6		S	A	J °C)ļ	4	6					9	7		6	3	9			4			8		2		6	7	1	4		2	
3 6	5		9	6			9				6		6	5	2	8			4	9	5	7	5	2	4		2	1	1	1		2	1	
							2									1		3			3	7				9	7	8	5			1	2	3
									6							6		5	7		3		3	7			1				1		7	
								6	7			2	3	1		1	5					1	9	2	4	8	2		7		4		2	
								8						5		4			9	9	5		7		9		8					1	2	
												9	6		3	6	7	6	4	6				5		9	8	6	9	6	7	3	5	
									6		7	8	_4	4	9		3				3	4	1	4					7	6		7		
											6			1					8	1		5				7	2	6	4			8		
										3						0			-5				6			7	2	1	8			7	5	
					5					6	_		_			3	2				7			9		9	6			6	5	6	5	
					5						4	5	1						н	ń	2		6			4				7			6	
					6		C	6	C	2		V	6	9	6			7		2	ļ		70	2		1				6				
													8		9		9			9	3	4	5	7	6		6	5		1				
																		5	5		4		9	7	4	3	8		8	4			7	
												ć				0		4			2	9	8	8	8		4		8	7	3	8	2	
																	2					1	7		7	2		4		_	5		2	
										2	8	7					\frown		7	4	2	3		3	6		3	_		7	2			
							2				V			C				C	9		C	2	V	0		6		7	7	7	8	•	•	
										l												1	3	7	4		9	9		3	0	8	8	
																				5		6	9	5	6	6	3		1	5	2	4	8	
																				8		2	6	3	4	8	9	6			4		5	
																									2			ۍ د	6	0	õ		0	
																									3			0	0	0	0		7	

Definition of Cardinality

- **Cardinality** defines how many instances of one entity are related to instances of another entity.
 - It is used to specify relationships in database systems, determining the nature of the association between tables or entities.

Reference: Cardinality helps in structuring relationships, such as one-to-one, one-to-many, or many-to-many.

Super-type and Sub-type Entity Relationship

- A **sub-type** inherits all attributes and relationships of the super-type.
 - Sub-type entities must be mutually exclusive is not true of super-type/sub-type relationships.
 - Sub-types may or may not be mutually exclusive, depending on the model.

Reference: Sub-types share some attributes with their super-type, but not all must be mutually exclusive.

Star and Snowflake Data Modeling Schemes

- Star and Snowflake are concepts of the Dimensional data modeling scheme.
 - These models are used in data warehousing for organizing data in a multi-dimensional format.

Reference: Dimensional modeling optimizes query performance in business intelligence systems, often using star and snowflake schemas.

Data Modeling Styles

- **CRUD** is **not** a data modeling style.
 - CRUD represents operations (Create, Read, Update, Delete), while modeling styles include **ORM**, **UML**, **IDEF1X**, and **CHEN**.

Reference: CRUD is an operations framework rather than a style of data modeling.

Purpose of a Logical Data Model

- The purpose of a Logical Data Model is to define the structure of data elements and set relationships between them.
 - It is used to represent how data should be structured within a system.

Reference: Logical models bridge the gap between conceptual understanding and physical implementation.

Keys in Data Models

• Logical Key is not considered a key in data modeling.

• Common keys include **Primary Key**, **Foreign Key**, **Surrogate Key**, and **Alternate Key**.

Reference: Logical Key refers to abstract definitions rather than being a concrete key used in database systems.

Synonym for Relation in Relational Data Model

- In the relational data model, the best synonym for a "relation" is **Table**.
 - A relation represents a set of data that can be described as a table with rows and columns.

Reference: Relations (or tables) are the core structure in relational databases, organizing data into rows (tuples) and columns (attributes).

Relationship Labels in Database Technology

- Relationship labels are verb phrases describing business rules in each direction between two entities.
 - They define how entities are related and interact with one another within the database.

Reference: Relationship labels clarify how different data elements are linked and used in business processes.

Business Rules in Data Models

- A business rule **defines constraints on what can and cannot be done**.
 - Business rules specify the conditions that must be met for processes and operations within the system.

Reference: Business rules play a critical role in ensuring data integrity and guiding system behavior.

Use of Foreign Keys from Code Tables

- A database using foreign keys from code tables for column values is implementing Reference Data.
 - Reference data is often stored in code tables and referenced by other tables using foreign keys.

Reference: This approach ensures consistency and accuracy of data values across systems.

Number of Data Models Expected in Projects

- More **physical data models** than **logical data models**, and more **logical data models** than **conceptual data models**, can be expected in projects.
 - As projects move from high-level abstraction to implementation, more detailed models (physical) are required.

Reference: Projects typically start with a single conceptual model but require multiple logical and physical models for different systems or components.

Definition of a Surrogate Key

- A surrogate key is a unique identifier attached to each record, which may be used as a primary key.
 - It is usually an automatically generated value that does not have a business meaning.

Reference: Surrogate keys simplify identifying records in large datasets, especially when natural keys are not ideal.

False Statement About Business Rules

- Data rules cannot be shown on a data model is false.
 - Data rules, such as constraints and relationships, can indeed be represented in data models.

Reference: Business rules guide data design and can be modeled as constraints or relationships in a data model.

Business Rule Not on a Logical Data Model

- Customer Last Name requires a non-unique index to improve retrieval performance should not appear on a logical data model.
 - Indexing is a physical implementation concern, not a logical data model concern.

Reference: Logical models focus on structure and relationships, not performance-related implementation details.

Purpose of Denormalization in Data Models

- Denormalization is done to **optimize overall database performance across both data access and data update requests**.
 - It adds redundancy to improve query performance but comes with trade-offs in terms of data integrity.

Reference: Denormalization balances the need for faster data retrieval against potential complexities in data management.

'X' in Information Engineering Subtype Discriminator

- The 'X' in the subtype discriminator symbol in information engineering means **Exclusive**.
 - It indicates that an entity can belong to only one sub-type in the hierarchy.

Reference: The 'X' helps enforce constraints in sub-type relationships, ensuring clarity in entity hierarchies.

Recursive Relationship

- A recursive relationship is unary (involves one entity) and is also referred to as self-referencing.
 - This relationship occurs when an entity has a relationship with itself, such as in hierarchical structures.

Reference: Recursive relationships are common in organizational hierarchies and other self-referencing data structures.

Bank Example: Many-to-Many Relationship

- The relationship type where each Customer may own one or many Accounts, and each Account must be owned by one or many Customers is many-to-many.
 - This type of relationship involves linking multiple instances of two entities.

Reference: Many-to-many relationships require intermediary tables in relational databases to manage the links between entities.

Data Model Components

- Data model components include Keys, Relationships, Attributes, Entities, and Facts.
 - These components define the structure and relationships of data within a database.

Reference: Data models help visualize and organize data, ensuring clarity in how entities relate to one another.

Alternate Key

- An alternate key is a candidate key not selected to be the primary key.
 - It can be used as a unique identifier but is not the main key chosen for the table.

Reference: Alternate keys provide additional options for uniquely identifying records in a relational database.

Best Relationship Type for Management Hierarchy

- The best relationship type for the example where **an employee may work for one other employee and may manage one or more employees** is **recursive**.
 - This relationship is commonly used to model hierarchical structures like management chains.

Reference: Recursive relationships effectively model hierarchical or self-referencing structures in data models.

Entity Synonym in Physical Model

- The most common term for "entity" at the physical level of a model is **Table**.
 - Entities represent data objects, and at the physical level, they are implemented as tables in relational databases.

Reference: Physical models translate entities into tables, defining how data will be stored in the database.

Properties of a Logical Data Model

- A Logical Data Model includes:
 - Relationship cardinality, attributes, and primary keys.
 - It is **technology-independent**, meaning it is abstract and not tied to any specific database platform.
 - The property that is **not true** for a logical data model is **technology-dependent**.

Reference: Logical data models focus on the logical structure of data without considering the underlying technology that will implement the model.

Super-type and Sub-type Entity Relationship

- In a **super-type/sub-type** relationship:
 - **Sub-types** inherit all attributes and relationships from the **super-type**.
 - Attributes and relationships shared by all sub-types are modeled in the super-type.
 - A common misconception is that **sub-type entities must be mutually exclusive**, which is not necessarily true.

Reference: Super-type/sub-type relationships are used to model entities with common characteristics while allowing for specific sub-type differences.